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INFLUENCE OF RADIATION ON THE DEGENERATION 

OF ISOTROPIC TURBULENCE IN HIGH-TEMPERATUP~ MEDIA 

I. A. Vatutin, B. A. Kolovandin, 
and O. G. Mart ynenko 

UDC 532.517.45 

It is shown that radiation exerts a distinct influence on the degeneration of 
isotropic turbulence depending on the vortex size in conformity with the for- 
mula obtained for radiant thermal diffusivity. 

Sufficiently many journal articles and monographs are devoted to the investigation of 
radiation interaction with a substance and to questions of the dynamics of a radiating gas. 
However, the interaction between radiation and turbulence during motion of high-temperature 
media has been inadequately studied. Meanwhile, as has been shown in [i, 2], this interac- 
tion is substantial for a number of problems of practical importance. The influence of 
radiation on the structure of degenerating isotropic turbulence in compressible high-tem- 
perature gases is examined below. 

It can be shown [2, 3] that at temperatures to many thousands of degrees the magnitude 
of the total volume density of radiation for not very rarefied media is small compared to 
the volume energy density of the particle thermal motion in the medium. This also refers to 
the so-called radiant pressure which is small compared to the pressure caused by particle 
motion in a medium~nder the conditions mentioned. At the same time, because of the high 
velocity of radiation propagation the radiation energy transfer can be substantially greater 
than the energy transfer during motion of the medium or motion of the particles in the 
medium. We shall later limit ourselves to the case when the equation of state of a ideal 
gas is approximately valid, and the specific heats Cp and c v are separately constant, i.e., 
are independent of the temperature. 

Under the constraints mentioned, the continuity, motion, and energy equations have the 
form [2, 4] 
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The radiant heat flux is 

q r a d =  i ~ IvdQdv, (4) 
v = O  

where the spectral radiation intensity Iy equals the quantity of energy transferred by radi- 
ation in some direction i referred to unit time, to a unit perpendicular to the area, to a 
unit solid angle Q, and a unit frequency band. 

The change in radiation intensity along a ray is determined by the processes of radia- 
tion, absorption, and scattering, as well as by the change in the volume density of radiation 
in time. Taking into account that the role of the radiation scattering process is small for 
high-temperature media [2], we write the radiation transport equation for locally equili- 
brium media in the form 

OI. _ kv ( B y - -  Iv), (5)  
Os 

where the spectral intensity of the black radiation B v is determined by the Planck formula 

2by 3 1 
" 

B ,  = c 2 e x p  h v  - -  1 

and k v i s  t h e  d i f f e r e n c e  b e t w e e n  t h e  t r u e  c o e f f i c i e n t  o f  a b s o r p t i o n  and t h e  c o e f f i c i e n t  o f  
i n d u c e d  r a d i a t i o n .  

A d i v  q r a d  e n t e r s  i n t o  ( 3 ) .  As h a s  b e e n  i n d i c a t e d  i n  [ 2 ] .  t h i s  q u a n t i t y  can  be  found  
for a known distribution Iv without using (4), since it is the quantity of radiation energy 
"being generated" (because of the difference between radiation and absorption) per unit vol- 
ume per unit time, and therefore, is equal to the integral of the right side of (5) with 
respect to the frequency and solid angle (in all directions): 

Let us consider the two limit cases of large and small optical densities of the medium. If 
the condition Lk v >> 1 (L is the dimension of the turbulent vortices) is satisfied for the 
radiation of all frequencies ~ essential in energy respects, then the so-called radiant heat- 
conduction approximation [2] is applicable, and 

qrad = -- kradVT, (7) 

where kra d = 4__~_~ ? I OB~ dv is the coefficient of radiant heat conductivity which depends 
3 O k~ 0T 

0 
on the local parameters of the medium, and can be added with the coefficient of heat con- 
ductivity determined by the thermal motion of the particles. 

If kvL << i, then the pulsation in the quantity I v will be quite weakly correlated to 
the local pulsations of the thermophysical quantities since the quantity I v is determined 
by the temperature distribution in a length on the order of i/k v >> L, and hence, is later 
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neglected by the correlations <I~D'>, where D is any local thermophysical quantity. The 
viscosity and heat conductivity coefficients dependent on hydrodynamic quantities (primarily 
on the temperature which makes obtaining a closed system of equations for the correlation 
functions difficult) enter into the equation; moreover, the derivatives of the fundamental 
fields (e.g., 3ui/~Xk) must be taken as new unknowns and a number of moments of nonlinear 
functions of the initial fields that occur in connection with the nonlinearity of the equa- 
tion of state must still enter into the analysis. Consequently, an awkward system is 
obtained that contains very much more unknowns than equations, which is quite difficult to 
utilize. Hence, following mainly [5, 6] we examine the simplest case of very weak turbulence 
described by the linearized hydromechanics equations, i.e., when the turbulent fluctuations 
are so slight that the third moments of all the hydrodynamic fields are negligible in com- 
parison with the appropriate second moments. In other words, we assume that the turbulence 
under consideration has al~ eady reached the "concluding period of degeneration." 

Since fluctuations of an arbitrary function of the hydrodynamic fields are represented 
in a linear approximation as a linear combination (with constant coefficients) of the initial 
field fluctuations, then any change of variables in the hydromechanics equations in this 
approximation will reduce to a trivial linear transformation of the system of equations for 
the correlation functions. To use the method already developed to investigate the degenera- 
tion of isotropic turbulence in compressible nonradiating media [3, 6, 7], we use the quan- 
tities u i (i=l, 2, 3), the dimensionless pressure P=p/YPo, and the entropy divided by Cp, 
or S =S/Cp, as the fundamental variables. Starting from the above, we easily obtain a 
linearized system of equations in the fluctuations ui, S, and P from (1)-(3) (by using Taylor 
series expansions). 

To obtain a system of equations in the correlation functions of the fields mentioned, 
each of the equations containing the derivative (3/3t)~(x, t) in the left side (where a=ui', 
P' or S') must be multiplied by B(x', t) =B(x+r, t) (where B is one of the same five quan- 
tities), the equality obtained must be added to the equation for (3/3t)~(x, t), multiplied 
by a(x, t), and the result must be averaged. In the case of homogeneous turbulence in which 
all the correlation .functions <a(x, t)~(x', t)> depend only on r = (x' -- x) and on t, 3/3xi 
should then be replaced everywhere in the equalities obtained by (--3/3r i) and 3/3xj' by 
3/3rj. The system of equations thus obtained is sufficiently complicated and hardly discer- 
nable physically. Hence, it is more convenient to go from the very beginning over to spec- 
tral equations. Subjecting all the equations obtained by the above-mentioned method to 
Fourier transformation and expressing the tensor Fij(k , t) and the vectors Fip(k , t) and 
Fis(k, t) in terms of the scalar functions FLL(k, t), FNN(k, t), FLp(k , t), and FLs(k , t) by 
using the known isotropic turbulence relationships [6], we consequently arrive at the fol- 
lowing system of ordinary differential equations for the spectral functions describing the 
evolution of weak isotropic turbulence in a compressible radiating gas 

O FNN 2~k2FNN, 
Ot 

FLL : - -  2~ik2Fz.L + 2a~okFL,, 
at 

- kFLz - -  [v~ + (~, - -  1) (% + )~ad )] k2FL~ (% + Xrad ~' kZFzs+a2~ 

- - 0  FL~ ---- - -  ( ' 7 - -  1) (Z + grad) kZFLp - [ ~  + (% -t- 7,rad)] kZFL~ H- a2kFw, 
Ot 

Fp~ = - -  2kFLp - -  2 (?i - -  1)(2 + Xra d ) k2Fpp - - [2  (% + Xrad ) kZFvs , 
at 

0_~ Fps =--kFLs - -  (y - -  1)(%+ grad ) kZFpv - Y  (%+ Xrad) k2Fv, - (%+ Xrad )k2F*s, 
Ot 

0 F s , =  - -  2 (? - -  1) (% + grad ) kZFvs - -  2 (Z + Xrad) k2F*, , 0-7- (8) 

cp ~ / is the speed of sound in the unper- w h e r e  $ -  V ; ~ i :  4 ~ + ~ ; ? : - - ,  ao 7" Po 
p. 3 p p Cv Po 

turbed medium; k, wave number equal to 2~/L (L is the size of the turbulent vortices); X =k/ 
poCp, FNN and FLL, spectral densities corresponding to the transverse and longitudinal cor- 
relation functions of the velocity fields, and the remaining FaB have analogous meaning. 
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The coefficient Xrad enters the equations in the system (8). 

4~ ~ 1 0B~ 
d~ 

k,, OT krad 3 o 

Xrad- PoC~ -- p0c~ 

Under the condition k~L << i 

where 

If k~L >>I, then 

(9) 

f (io) 
Xra d = poc~k2 ' 

f = 4a, OT [ - ~ -  O < l v > d f l  dr. (11) 

v v 

Here  kv ,  B>, 3kv/3T and 3By/aT s h o u l d  be  e v a l u a t e d  i n  ( 9 ) - ( 1 1 )  f o r  T = <T>. By u s i n g  (5) i t  
i s  e a s y  to  show t h a t  < Iv>~  <By> i n  a l i n e a r  a p p r o x i m a t i o n .  Hence ,  t he  s econd  t e rm  on t h e  

OkV dv right in (ii) is a thermophysical property and equals 4~fB~ for T = <T>. 
v 0T 

Therefore, the influence of radiation on turbulence is that the ordinary thermal dif- 
fusivity X should be replaced by some effective thermal diffusivity 

Z~f = Z + Xrad, (12) 

where Xrad is determined by (9) and (i0), respectively, for optically thick and optically 
thin media. 

If Xrad =0, the solution of system (8) is elucidated in [6], and the general solution 
for Xrad # 0 will naturally have the same form. However, in obtaining simple limit expres- 
sions, e.g., as k § and also when Xrad >> X, substantial differences appear. Consequently, 
we briefly describe the method of solution and we write the limit expressions for the spec- 
tral and correlation functions, when Xrad and X are commensurate in order of magnitude, and 
when Xrad >> X as k§ 

The solution of the first equation in system (8) is sought separately, and it is 
examined in [6]. Hence, it is sufficient for us to consider the six remaining equations 
which form a system of ordinary linear differential equations with constant coefficients 
for fixed k. To solve this system, a characteristic equation determining the particular 
solutions proportional to exp(~t) is formed first. Expanding the sixth-order determinant 
giving this characteristic equation, we obtain a sixth-power algebraic equation that is 
reducible, since it can be shown that its left side equals the product of two third-power 
polynomials. Using the relationships between the roots and coefficients of the polynomials, 
we see easily that the six roots of the characteristic equation equal all the possible sums 
of two roots (perhaps repeated) of the following cubic equation 

If the time t is replaced by the dimensionless time T = aokt, then ~ goes over into the dimen- 
sionless quantity I =m/aok, and (13) into the equation 

%3q_ 
a0 ~ a~ ] a0 

S o l v i n g  (14) by  t he  Cardano method [ 8 ] ,  s a y ,  t h e  e i g e n v a l u e s  can be fo u n d ,  and t h e n  t h e  
eigenvectors, and therefore, the general solution for the spectral functions. Hence 

FNN (k, t) = Co (k) exp (--  2~kzt), (15) 

while the remaining six functions of the system (8) are expressed as follows 

F ~  (k, t)=c~ (k) b~  ~ exp (2r (k) bg)exp (2c%t)+c3 (k) b~exp  [(col+co,)t] 

+c~ (k) b~a~ ) exp [(~%+c%) t]+c5 (k) b(aSg ) exp 1(r 6 (k) b<=6~ ) exp(2,,ht), ( 16 )  

where  oJx, oJ2, toz a r e  t h e  r o o t s  o f  (13); co(k), c~(k), . . . ,  c6 (k )  a r e  s ev en  f u n c t i o n s  o f  k 
such that c=(k)= [c1(k)]*, c~(k)= [c~(k)]* (the sign []* denotes the complex conjugate), 
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while the remaining ci(k) are real. The coefficients baB (I), ..., b~(n) are proportional 
to the values of the corresponding cofactors of the characteristic determinant of system 
(8). Therefore, solutions (15) and (16) of system (8) depend on seven arbitrary real func- 
tions defined by the initial values of the corresponding spectral functions. 

A further simplification of the results obtained can be achieved if we note that (14) 
and the system of equations (8) contain dimensionless constants having a different order of 
magnitude. In fact, all the coefficients in (14) can be expressed in terms of three dimen- 
sionless quantities 

~l ~k Pr ~t cp 
ao %el Cv (17) 

The parameter ~ = 9k/~o is of the same order as the ratio 1/L between the gas mean free path 
1 and the dimension of the turbulent vortex L =2w/k (since 9~ vl, where v is the mean veloc- 
ity of thermal molecular motion, ao ~v, k~ I/L). Hence, in all cases when the gas motions 
can be described by using the ordinary hydrodynamic equations ~ < i; in particular, for air 
under normal conditions 9/ao ~ 0.5.10 -5 cm, i.e., even if L~ 1 mm, then ~ < i0 -4. Then ~i = 
(~i/~)6 also has the same order of magnitude. 

Let us write (14) with (17) taken into account: 

X ~ + 1 + ~ - ~ r  Pr (18) 

Therefore, if Xrad is less than or commensurate with X in order of magnitude, then Pr~ 1 
and the three roots of (18) are determined easily to the accuracy of terms of the order 
~i inclusive by using the usual power-series method. We consequently obtain 

t 3 - -  

where Pr =DI/(X + Xrad)" 

Let us note that for the case when kwL << 1 

1 , = i -  ( P r + v - - 1 )  3,, 
2Pr 

z~=--i (Pr+~--l) 
2Pr 6i, (19)  

6t 

P r '  

and Xrad is defined by (i0), we limit our- 
selves to definite values of the wave number k since Xrad grows strongly but the number 
Pr decreases as k§ 

To 61 accuracy the solutions of the system (8) are determined by the formulas 

FNN (k, t) : c O (k) exp (-- 2$kzt), 

FLz (k, t) = ci (k) a~o exp (2coit) + c.. (k) a 2 exp (2(od) + c3 (k) a~ exp [(o, + o~) tl, 

FLp (k, t) =- ict (k) ao exp (2cod) - -  ic2 (k) ao exp (2(o#), 

Frs (k, t) = c~ (k) ao exp [(o h + (o3) t] + c5 (k) ao exp [((o2 + ~ )  t], (2 0) 

Fp~ (k, t) : - -  el (k) exp (2(oit) - -  c2 (k) exp (2(o2t) + c3 (k) exp [((o, + (o~) t], 

Fp, (k, t) = ic~ (k) exp [(oh + (o3) tl - -  ic~ (k) exp [((o~ + o3) tl, 

F, ,  (k, t) : c6 (k) exp (2(o~t), 

w h e r e  i 2 = - - 1 ;  c o ( k ) ,  c l ( k ) ,  . . . ,  c 6 ( k )  s a t i s f y  t h e  same c o n d i t i o n s  a s  i n  ( 1 6 ) ,  0 3 i = a o k ~  i 
( i  = 1 ,  2 ,  3 ) ,  and t h e  ~ i  h a v e  t h e  same mean ing  as  i n  ( 1 9 ) .  

If Xrad >> X (in case kyL << 1 tbis will be satisfied always as k +0), the X in the 
exact solution of (14) by the Cardano method [8] should be neglected in comparison to Xrad, 
and the principal terms retained as k§ We then find 

/ Z ~ =  ~ 2 =  O, /(o~ ---- (o~ = O, 

81 or 61 f (21 
[ 1 3 = - - Y ' ~ r  { (o3= - -  aok? ~ r  = ? - -  9ocp 
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In this case we obtain the following expressions in place of (20): 

FNN (k, t) ---- Co (k) exp (-- 2~kzt). 

FLL (k, !t) = ct (k) a 2 exp (2~o~t) + c~ (k) a~ exp [(~ot + c%) t] + c~ (k) a~ exp (2c%t), 

FLp (k, t) = ci (k) ao exp (2~oit) + c5 (k) ao exp [(o~, + c%) t], 

Fp~ (k, t) 1--c~(k) exp [(o~l +o~2)t]+c6(k)exp [(~%+~%) tl+c~(k)exp(2a~zt), 
(v-- 

FL~ (k, t) --  - -  (y 1) c~ (k) ao exp (2~oit)+c~ (k) ao exp [(~% + ~%) t], 

F~(k .  t)~c~ (k) exp [(c%+~%) t]-t (2- -  ?) c~ (k)~exp [(~%+~%)t]+c3(k)exp(2~%t), 
2 

F~ (k, t) = - -  ( ? - -  1) c~ (k) exp [(oh -t- ~%) t]-- (7 - -  1) ca (k) exp [(c% -+- ~%) t] + ca (k) exp (2c%t), 

(22) 

where all the co(k), c1(k), ..., c6 (k) are real and determined by the initial values of the 
spectral functions. 

For known initial values of the spectral functions we can always obtain expressions for 
the corresponding correlation functions by means of the formulas [6]: 

? sin. kr F(k) kZdk, B (r) 4~ 
2 kr 
0 

BLO = 4~ cOSkrkr ~_ -~r7 FLO (k) k~dk, 

0 

(23) 

BLL(r)=4g.i{ sinkrkr 
0 

BArN (r) = 4~ i 
0 

- - + 2 - -  s,nkr } i{ cos kr 2 - - ,  FLL (k) k2dk + 4~ -- 2 cos kr 
( l~rp ( l~r ) 3 ( krp 

0 

- - + 2 - -  sin kr i FNN (k) kZdk, 
( /~r) ~ J 

(kr; - - - - - U  -~ (kr? k--~ + (hr) ~ 
0 

sin kr } FNN (k) kZdk, 
(kr)  3 

where ~ = P or S and B(r) is a correlation function of scalar quantities. 

We present here the expression of just certain correlation functions for the case kvL 
1 and when Xrad is less than or comparable to X in order of magnitude. In this case, all 
six exponents m=2ml, 2m2, ..., 2~3 have negative real part for any k >0 because of (19). 
Hence, parts of the integrals (23), taken from k = e to k = ~ for any ~ >0 will yield only 
the exponentially damped component in the expression for the appropriate correlation func- 
tion. Therefore, the asymptotic behavior of all the correlation functions will be deter- 
mined only by values of the integrals, taken between 0 and c, in the right sides of (23) as 
k +~, and will depend only on the behavior of the corresponding spectral density FaB(k , t) 
in the neighborhood of the point k = 0. In investigating the principal term of the spectral 
functions around k =0, we can use the simplified formulas (20) fully since terms on the 
order of 61 = ~Ik/ao, which vanish as k § have been omitted. Moreover, for the same reason 
we can now use the simplified formulas (19) to determine the exponents mi =aok%i, and take 
the coefficients co(k), c1(k), .... c6(k) equal to co(O), ci(0), .... c6(0) for k =0. 
Applying this discussion to the functions BLL(r , t) +2BNN(r , t), Bp,p,(r, t), and Bs,s,(r , 
t) in particular, and retaining only the principal terms in the right sides, we obtain 

~x3/2 ( r2 ) 
BLL (r, t) -t- 2BNN (r, t) ~ 2co (0) (2vt)3/~ exp 87~t 

+ a~oc 3 (0) {[~,+(~,._ 1)(;~ + ~ad)]} 3/2 exp -- 
4 [7~, -+_ (v__l)(z_67,rad)] t 

Jl3/2 F2 

B. "o" (r./)=c3(0) {[v,-+-(? -- l)(%+7,rad)] t} a/2 exp{-- 4 [v~+(7-- )(%+Zrad~]t} 1 

B~,~,(r, t)~c6,O) ~3/2 [ r 2 ] 
[2 (% @ %tad)/]3/2 exp 8 (z + ~rad) t 

1293 



Here Co(0), c3(0), and c6(0) can be expressed in terms of the known invariants At, A2, A3 
and A4 which have the same meaning as in [6, 9]. In the general case, values of the spectral 
functions must be given for t = 0 from some kind of physical considerations. 

In conclusion, let us note that for kvL ~ 1 the influence of radiation will be identi- 
cal for any vortex size, while in the case k~L ~ 1 the radiation, according to (i0), will 
exert a different influence depending on the size of the turbulent vortices. As follows from 
the procedure to obtain (i0), this fact will hold not only in the gas radiating for kvL ~ 1 
but also in any media in which there are internal sources of energy liberation and absorption 
and when this liberated or absorbed energy depends on the temperature or other thermophysi- 
cal parameters of the medium. For instance, this can be observed in media with chemical 
reactions. 
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